
1484 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 9, SEPTEMBER 1993

On the Analysis of Single- and Multiple-Step

Discontinuities for a Shielded Three-Layer

Coplanar Waveguide
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Abstract— Single- and multiple-step dkcontinuities for a
shielded three-layer coplanar waveguide (CPW) are studied. The
mode matching procedure is employed to obtain the scattering
(S) parameters of the discontinuities. The analysis is validated
through a comparison of the calculated S-parameters of a single
step discontinuity for a shielded single-layer CPW and those
published previously. Calculated S-parameters for various single,
double, and triple step discontinuities are presented. Effect of the
modal orthogonality criterion on the discontinuity S-parameters
is given. Extensive investigation of the numerical convergence of
the S-parameters is also described.

I. INTRODUCTION

T RADITIONALLY, MICROSTRIPLINE has been widely

used as the primary transmission line for hybrid and

monolithic microwave and millimeter integrated circuits (MICS

and MMICS). Recently, however, there has been considerable

interest and use of coplanar waveguide for MICS and MMICS

due to its attractive features. The use of CPW can eliminate

via holes in connecting circuit elements to ground, allow easy

realizations of cQmpact balanced circuits, and reduce cross

talk between lines.

Without any question, the analysis of CPW discontinuities

plays the most important role in the design and analysis

of CPW MICS and MMICS. In order to achieve high-

performance, low-cost microwave components employing

CPW, highly accurate analysis of CPW discontinuities

are needed. In comparison with microstrip discontinuities,

activities on CPW discontinuity analysis have been sporadic, in

spite of several attractive advantages of CPW. Very little work

on CPW discontinuities has been done so far [1] – [8]. One of

the most commonly encountered discontinuities in MICS and

MMICS is the step discontinuity. A lumped element equivalent

circuit model of a symmetric step in the center conductor of a

conventional nonconductor backed CPW, based on measured
scattering (S) parameter, has been developed [4], [5]. Full-

wave modal analyses of a single-step discontinuity [6], [7]

and cascaded junction discontinuities [8] for a shielded single

layer CPW has also recently been reported. However, analysis

for single- and multiple-step discontinuities in a shielded three-

layer CPW structure has not yet been attempted. As compared

to the single-layer CPW, the three-layer structure can suppress
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the leaky wave as well as control the fundamental-mode

frequency range by using appropriate dielectric substrates for

the top and the bottom layers.

In this paper, we present the anaIysis of single aud multiple

step discontinuities for a shielded three-layer CPW using

the full-wave mode matching technique [9], utilizing the

eigenmodes obtained based on the spectral domain approach

[10]. Various numerical results for the S-parameters of sin-

gle and multiple step discontinuities in CPW are presented.

Effect of the modal orthogonality criterion on the numerical

values of the discontinuity S-parameters is investigated. Exten-

sive investigation of the convergence for the disccmtinuities’

S-parameters is also given. S-parameter data of a single-step

discontinuity for a shielded single-layer CPW, generated using

the developed analysis, agree well with the published data

[6], [7].

II. MODAL ANALYSIS OF STEP DISCONTINUITIES

Fig. 1 shows cross-section of the three-layer CPW, enclosed

in a perfectly conducting shield, and its step discontinuities,

classified as single step [Fig. l(b)], double step [Fig. l(c)],

and multiple step [Fig. l(d)]. Both the ground planes and

center strip are assumed to be perfect conductors and infinitely

thin, and the dielectric substrates are assumed to be loss

less. The discontinuities are very general in that the widths

of the center conducting strip and ground planes can be

changed separately or simultaneously. Both symmetrical and

asymmetrical changes can also be accommodated.

A. Single-Step Discontinuity

Fig, l(b) shows the considered single step discontinuity,

where region b is assumed to be extended to infinity. In using

the mode-matching technique, the hybrid modes, including

the propagation and evanescent modes, on the left-hand side

(region a) and right-hand side (region b) of the plane of the

discontinuity (z = O) are first determined using the spectral

domain technique [10]. Assume a wave with a unit modal

voltage is incident from region a. The transverse electric

and magnetic fields on regions a and b, at the plane of the

discontinuity, are then expressed in terms of these eigenmodes

and matched across the discontinuity, resulting in the following
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equations can be immediately solved to obtain the solutions
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1 for the (lVa + Nb) unknowns p, a; (i = 2,3,..., N.), and
Y Z=o c5j(j=l,2,..., Nb ), which characterize the S-parameters of

(a) (b) the discontinuity.

B. Double-Step Discontinuity

For the double-step discontinuity [Fig. l(c)], the trans-

verse electric and magnetic fields in regions a (z < O), b

(O < .Z < L), and c (z ~ L), at the planes of the discon-
tinuities (z = O,L) are expressed as a superposition of the

incident, reflected, and transmitted eigenmodes. Assume a

I-MMp
wave of unit modal voltage is incident from region a. By
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imposing the continuity of the transverse fields across the
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discontinuities, the mode-matching equations at the z = O
@

plane and .z = L plane can be written as
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Fig. 1. A shielded three-layer CPW cross-section (a) and single- (b), double-
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(c) and multiple- (d) step discontinuities. . exp (–j@L) (4a)
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k a and Z b, ~ b are the normalized electric and

q=l
where E a,
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magnetic field vectors in region a and b, respectively, with ~ %~: exp (–~@~L) – ~ c.E~ = ~ d.~~ (4d)

~~ and ~~ representing the respective electric and magnetic q=l 7.=1 .$=1

fields associated with the reflection coefficient p of the incident

mode; ai and bj are the complex amplitude coefficients of

moldes i and j scattering into regions a and b from the incident

mo(de at the discontinuity, respectively.

In order to solve (l), we introduce an inner product defined

by

(2)

~ =Ca or b and A = a or b. S in the guide cross-section. By

taking the inner products of (la) and (lb) with ~~ and E;,

respectively, and truncating the infinite series to N= and N6,

which signify the number of eigenmodes in regions a and b,

respectively, one obtains the following system of (N. + N~)

linear equations:

respectively, where En and ~ m (n = a, b, c) represent the

normalized electric and magnetic field vectors in regions n,

respectively; Z: and ~~ are the normalized transverse electric

and magnetic fields of the incident mode having reflection

coefficients p; aP and bq are the complex coefficients of modes

p and q scattering into regions a and b from the incident mode

at the first discontinuity y, respectively; c. and d, denote the

complex coefficients of modes r and s scattering into regions

b and c from the second discontinuity, respectively; /3$ is

the propagation constant of mode r in region b. Taking the

inner products of (4) with ~~, E!, and ~~, respectively, in

accordance with the inner product defined in (2) with T and

A now denoting region a, b, or c, yields the following system

of (N. + 2Nb + N=) linear equations:

-? cTI~ exp (–j/3~L) = O,
7-=1

k=l,..., Na (5a)
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‘r=l

1=1,..., Nb (5b)

g=l 7’=1 .s=1

m=l, . . ..Nc (5C)

The infinite series have been truncated to N., Nb, and NC that

approximate the number of eigenmode in regions a, b, and c,

respectively. These equations can now be solved to determine

the solutions for the unknowns, p, aP (p = 2,3, ”.., N. ), bq,

and Cr (q.r = 1,2, . . . ,N~), and ds (s = 1,2,... ,NC).

C. Multiple-Step Discontinuity

Analysis for the multiple step problem of Fig. 1(d) is very

similar. By extending the foregoing theory, the composite

generalized scattering matrix of the multiple step can be

obtained, taking into account the interactions between the

junctions via the fundamental as well as higher order modes.

It is well known that eigenmodes of a waveguide with

perfectly conducting walls should satisfy the following modal

orthogonality criterion.

(6)

where ~%j is Kronecker delta function and n = a, b, c, or d. So

this should serve as a test for the accuracy of the numerically

computed modes.

D. Numerical Results

In order to verify the developed analysis of step discon-

tinuities, numerical computations have been performed for a
single-step discontinuity in a shielded single-layer CPW and

compared with published data. Various numerical results for

S-parameters of single, double, and triple steps of shielded

three-layer CPWS were also generated to demonstrate our

analysis.

Results for a CPW single step discontinuity presented in

[6], [7] were compared with our results. Almost complete
agreement in magnitudes and phases of the S-parameters was

observed.

In Fig. 2, we show variations of calculated S-parameters

versus the frequency for a double three-layer CPW step. In

Fig. 3, we plot the magnitudes of a double CPW step as a

function of the mid-region length L at 20 GHz. It is apparent,
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Fig. 3. Variation of the magnitudes of SI I and S21 as functions of the
mid-region length L for a CPW double step.
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Fig. 4. Calculated magnitudes of S11 and S2 ~ of a shielded three-layer
CPW triple step.

because of the identical regions employed in a and c, that a

reduction in L increases the transmission.

Finally, the computed magnitudes of the S-parameters for a

triple step in a shielded three-layer CPW are plotted in Fig. 4.

In order to assess the accuracy of the obtained results,

we have investigated and verified numerically the validity
of the power conservation (1S1112 + IS2112 = 1), the

boundary conditions on the y = h2 + h3 plane, the ortho-

gonality condition, and the convergence of the S-parameters.
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Fig. 5. Comparison of the calculated magnitudes of S11 and SZI for a
shielded three-layer CPW single step with and without the orthogonality
enforced.

As the CPW eigenmode calculations are approximate due

to the necessary numerical truncations, deviation from the

orthogonality criterion sometimes results, as expected. To

illustrate this phenomena, we compare the S-parameters

for a single CPW step, calculated with and without the

assumption of the orthogonality condition, in Fig. 5. As the
mclde calculations are very accurate in this case, these two

results have merged completely to one another. For poorly

calculated eigenmodes slight variation between the two results

is expected.

The numerical convergence for the S-parameters of the

CPW step discontinuities as a function of the number of

eig,enmodes considered is now investigated. An extensive

study on the convergence of the magnitude of S1l, performed

on several single-step discontinuous structures, has shown that

a good three-digit agreement is achieved when using more
than 5 eigenmodes in both of the regions. The convergence

phenomenon of the S-parameters for a CPW double-step

structure has also been studied. Fig. 6 shows the convergence

results for the magnitude of S11. For each curve, the number

of modes P and Q in the two outer regions are kept equal and

constant, while that in the middle R is varied. It is readily seen

that the numerical convergence is approached as the number

of the mid-region modes is increased. The number of modes

in the two outer regions has little effect on the convergence of

the S-parameters. This result is not unexpected due to the fact

that interactions between modes in the outer regions occur

in the mid-region, resulting in a rapid variation of current

in the double-discontinuous structure. A remark needs to be

made at this point is that the convergence criterion may vary

largely form one structure to another for a double step as well

as for multiple steps. In particular, for a small mid-region

length, there will be more interactions between modes in the

mid-region since evanescent modes created in one junction

will be able to reach the other junctions before decaying
completely. Consequently, more modes need to be employed

in the mid-region for the convergence to take place. In our

double-step calculations, we used 6 modes in the outer regions

(N. = NC = 6) and 12 modes in the mid-region (N, = 12).

For the triple-step calculations, we also employed 6 modes in

the two outer regions and 12 modes in the two mid-regions.
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Fig. 6. Relative convergence of the magnitude S11 for the CPW of Fig. 2
with L = 2 mm, as a function of the total number of modes used. P =
number of modes in region a, Q = number of modes in region c, and R =

number of modes in region b. ~ = 10 GHz.

III. CONCLUSIONS

A modal analysis for single- and multiple-step discontinu-

ities of a shielded three-layer CPW has been reported. The

analyzed step discontinuities are arbitrary in which either the

center strip width, the ground planes, or both can be varied

and both symmetrical and asymmetrical changes in widths

are considered. Very good agreement between our calculated

results and those published for a single shielded single-

layer CPW step has been observed. The modal orthogonality

criterion has been studied and found to affect the S-parameter

numerical results, power conservation, and convergence. The

developed step discontinuity analysis for the shielded three-

layer CPW structure should be very useful for the design of

CPW MICS and MMICS.
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